Copper-zinc superoxide dismutase: theoretical insights into the catalytic mechanism.
نویسندگان
چکیده
The mechanism for the toxic superoxide radical disproportionation to molecular oxygen and hydrogen peroxide by copper-zinc superoxide dismutase (CuZnSOD) has been studied using the B3LYP hybrid density functional. On the basis of the X-ray structure of the enzyme, the molecular system investigated includes the first-shell protein ligands of the two metal centers as well as the second-shell ligand Asp122. The substrates of the model reaction are two superoxide radical anions, approaching the copper center at the beginning of two half-reactions: the first part of the catalytic cycle involving Cu+ oxidation and the second part reducing Cu2+ back to its initial state. The quantitative free energy profile of the reaction is obtained and discussed in connection with the experimental data on the reduction potentials and CuZnSOD kinetics. The optimized structures are analyzed and compared to the experimental ones. The two transition states alternate the protonation state of His61 and correspond to histidine Cu-His61-Zn bridge rupture/reformation. Modifications applied to the initial model allow the importance of Asp122 for catalysis to be estimated.
منابع مشابه
Engineering and characterization of human manganese superoxide dismutase mutants with high activity and low product inhibition.
Human manganese superoxide dismutase is a mitochondrial metalloenzyme that is involved in protecting aerobic organisms against superoxide toxicity, and has been implicated in slowing tumor growth. Unfortunately, this enzyme exhibits strong product inhibition, which limits its potential biomedical applications. Previous efforts to alleviate human manganese superoxide dismutase product inhibition...
متن کاملAlteration of Endogenous Glutathione Peroxidase, Manganese Superoxide Dismutase, and Glutathione Transferase Activity in Cells Transfected with a Copper-Zinc Superoxide Dismutase Expression Vector
Transfection of a human pSV2 (copper-zinc) superoxide dismutase expression vector into murine fibroblasts resulted in stable clones producing increased amounts of copper-zinc superoxide dismutase. A marked increase in endogenous glutathione peroxidase activity (up to 285%) and a smaller increase in glutathione transferase activity (up to 16%) also occurred. Manganese superoxide dismutase activi...
متن کاملIdentification of iron superoxide dismutase and a copper/zinc superoxide dismutase enzyme activity within the marine cyanobacterium Synechococcus sp. WH 7803.
Three constitutive forms of superoxide dismutase activity have been demonstrated in the cyanobacterial marine picoplankter Synechococcus sp. WH 7803 using polyacrylamide gel activity staining techniques. A protein which gave a positive non-haem iron stain on native polyacrylamide gels exhibited N-terminal similarity to both the iron superoxide dismutase and the manganese superoxide dismutase of...
متن کاملMicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis.
In plants, copper is an essential micronutrient required for photosynthesis. Two of the most abundant copper proteins, plastocyanin and copper/zinc superoxide dismutase, are found in chloroplasts. Whereas plastocyanin is essential for photo-autotrophic growth, copper/zinc superoxide dismutase is dispensable and in plastids can be replaced by an iron superoxide dismutase when copper is limiting....
متن کاملProtective effect of human recombinant copper-zinc superoxide dismutase (hr-cuznsod) on intermediate burn survival in rats.
Objectives. Superoxide dismutase, acting as a scavenger of oxygen free radicals, has shown mixed results in increasing survival from burn wounds. We previously demonstrated that human recombinant copper-zinc superoxide dismutase could increase the survival of failing ischaemic flaps in a rat model. Because of the similar pathophysiology of tissue ischaemia in flaps and intermediate zone burns, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inorganic chemistry
دوره 44 9 شماره
صفحات -
تاریخ انتشار 2005